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1. INTRODUCTION

The purpose of this work is to describe a straightforward geometrical construction

• that approximates the mapping of solar magnetic fields through the corona to inter-

planetary space. The construction is based conceptually on the source-surface model

introduced by Schatten et al. (1969) and by Altschuler and Newkirk (1969). The source

surface in their models is a sphere of radius r5 = 1.6-2.5 r0 (solar radii) on which the

scalar potential V (from which B = -VV is derived for r ~ r ) is made constan t. This
_ 

—~~ S

constraint has the effect of making B radial at r = r . The field outside the source sur-

face in their models is generated from the spiral—field construction of Parker (1958) by

imposing the continuity of B at r = r5.

• The traditional source-surface models (Schatten et al., 1969; Altschuler and

Newkirk, 1969) are computationally very simple and yield a qualitatively pleasing

reproduction of major heliomagnetic features such as helmet streamers, filaments,

arcades of closed field lines, and coronal holes. However, these models are only

approximations to a rigorous magnetohydrodynamic (MHD) solution of the interaction

between the solar wind and the coronal magnetic field. The inaccuracy inherent in these

models prevents a detailed comparison of magnetic structures in the outer corona and

solar wind with observed magnetic field patterns in the photosphere. The major

weakness in these models is the incompatibility of the postulated radial magnetic field

with MHD at r ~ 10 r0. This weakness is well illustrated by comparison with the only

existing MHD solution (Pneuman and Kopp, 1971a,b), which was obtained for the special

case in which the normal component of the photospheric field is that of a dipole field

-7-
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• - with a polar field strength of 1 G. In ~igure 1 the usual source-surface solution for this

case is compared with the MHD sol~.. ion. The differences are quite obvious. The MIlD

• field lines are not even approximately radial for r > r5 = 2.5 r0, and the choice of a

• smaller source surface would make the disagreement even worse.

There have been subsequent attempts to replace the source-surface models by
- . models which represent the MHD effects more accurately. Schatten (1971) developed an

analytical technique that was based on the idea of placing sheet currents between

oppositely directed open field lines. The resulting construction produced a qualitative

improvement , in that the open field lines were indeed deflected equatorward instead of

being radial; however , field lines in the region near the cusps of helmet streamers were

poorly modelled thereby. (In order to model well the direction of the open field lines , the

• cusps had to be placed unrealistically low , i.e., at 1.6 r0 in the dipole case.) Yeb and

• Pneuman (1977) developed a much more rigorous sheet-current model in which the

location and strengths of current sheets between oppositely directed open field lines (and

between closed and open structures) are actually calculated iteratively by determining

the force balance between the magnetic field and the gas pressure in the expanding

corona. Their result was shown to be very accurate when compared with the MHD dipole

solution , but the calculation was so lengthy that it appears impractical to generalize

their scheme to the point of applying it to a set of observed photospheric magnetic

fields.

In the present work we develop a construction that retains most of the compu-

tational simplicity of the earlier source-surface models but which significantly improves

the agreement with the MHD solution in the dipole case. We do this by adopting an

-8-
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Fig. 1. Configuration of Magnetic Field Lines Emanating from
an Internal Solar Dipole in the MHD Solution of Pneuman
and Kopp (197 la,b; dashed curves) and in the Source-• Surface Model of Altschuler and Newkirk (1969; solid

• - curves) .  The spherical source surface (do tted curve)
was taken to have a radius equal to 2. 5 r 0
(Altschuler and Newkirk, 1969).
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appropriate non-spherical source surface on which the heliomagnetic scalar potential V is

made constant. The exterior solution is constructed in this case by mapping the outward

normal to our source surface in accordance with a generalized Parker spiral. Our choice

of a non-spherical source surface is well motivated by MHD considerations, and the field

that we generate agrees well in magnitude and direction with the one calculated by

Pneuman and Kopp (1971a ,b).

-.10-
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2. NONSPHERICAL SOURCE SURFACE

I--

For our non-spherical source surface , we select an appropriate isogauss of the
• 

• spherical-harmonic extrapolation of the magnetic field derived from internal sources ,

i.e., without considering the effects of currents external to the sun. The identification

of the source surface with an isogauss rather than a sphere represents a better simulation

• of magnetohydrohynamic (MIlD) behavior. One should expect the magnetic field to be

distorted very little by plasma currents where B is large, but very much where B is small.

• Thus, the influence of the solar dipole should be relatively less perturbed by plasma

currents at polar latitudes than at equatorial , for observers stationed at the same

heliocentric distance.

• We do not attempt to specify the source surface self-consistently, e.g., t’ y

including the effects of external currents on B , and therefore on the shape of the

critical isogauss. We are not attempting here to solve a proble m in MIlD rigorously, but

are instead trying to formulate a straightforward geometrical construction . The

accuracy of our construction is easily tested by comparing our results with an MHD

solution , and our model is amply vindicated by such a comparison.

After the non-spherical source surface r
~

( 0 , ç) is identified from the spherical-

harmonic expansion deduced from the observed photospheric magnetic field , the coronal

field interior to the source surface is derived under the assumption that this volume is

current-free. The coronal B field there is calculated from a scalar potential of the form

— I i —  

-- - - • - --~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~~~~~~ N n

V = r0 ~~~ ~~~ [(r 0/r)”~
1 (g~ cos m~ + h~ sin mc ) P~~( 0)

n=l m=0

+ (r 0/r )(r/r 0)nl (~~m cos m~ ~~~ sin mc) P~
’ (e ) ] ,  (1)

where r0 is a (constant) radius representative of the non-spherical source surface. In the

dipole solution that follows, the parameter r0 is the equatorial radius of the source

surface. In a general solution , r0 is merely a parameter that conveniently represents the

particular isogauss level that is chosen. For example , one might identif y the critical

isogauss either by specifying B~ (the value of I,~Jon the surface) or by specifying

r0/r0 B0~~~
3 [(g~)2 

+ (g~)2 
+ (h~)2 ]~~

6 (2)

as a general definition clearly consistent with (and , indeed , motivated by) the dipole

case. The coefficients g~ and h~’ are (of course) already determined from the spherical-

harmonic expansion deduced from observations of photospheric field ~~~~~~~~ Altschuler et

al., 1977).

The coefficients ~ and are chosen so as to minimize the mean-square

tangential component of B over the source surface. This is an operational way of saying

that B should be (as nearly as possible) normal to the source surface. This statement is a

-12-
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straightforward generalization from the model characterized by a spherical source

surface. There are two main complications in this generalization: There is no longer a

simple relation between the ~ ~ (h~~) coefficien ts and the g~ (hr) coefficients, and one
- ‘ cannot be assured that any spherical-harmonic potential exists that makes B normal to

• the source surface over the entire area. We therefore ask only that the ~ and

coefficients be such as to minimize the integral

~ ~~fB ~ dA (3)

over the source surface , where Bt is the tangential component of B.

To obtain B outside the non-spherical source surface , we construct the outward

normal to the source surface and make the normal component of B continuous there.

This is an obvious generalization from the case of a spherical source surface. It should

be quite effective when the source surface has a relatively simple shape, ~~~~~~~~ in the

dipole case discussed in the following section. However , one may question this procedure

for more complicated source surfaces, and one must recognize that the procedure

becomes meaningless if the source surface is not everywhere convex. However , even in

such extreme cases, the solution internal to the source surface might be utilized to

prescribe a magnetic field geometry so that the hydrod ynamic problem of coronal

expansion within a specified field geometry can be solved (Durney and Pneuman , 1975).

In such a case the external flow field might be obtained from hydrodynamics (rather than

MHD) by imposing the Durney-Pneurnan solution as a boundary condition at the non-

spherical source surface. In essence, then , we specify a very simple extrapolation of the

field normal to the source surface but recognize that a more realistic (albeit more

complicated) solution might be necessary in practice.

-13-
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3. THE DIPOLE CASE

The application of our technique to the case of an internal solar dipole is very

instructive for several reasons. First , the source surface can be expressed analytically,

so as to make the least-squares minimization of (3) particularly simple. This allows us to

investigate the stability of the solution and the convergenge of the calculated as N ,

the maximum allowed order , is increased. Second, the solution is directly comparable

with the MHD dipole solution of Pneuman and Kopp (1971a ,b). This comparison will be

used as the primary test of the accuracy of our technique. Finally, even such a simple

field configuration as the solar dipole already yields very instructive information about

the behavior of the interplanetary B field , as observed at r 1 AU. Therefore , we

present the detailed solution of the solar-dipole case to illustrate the advantages of a

non-spherical source surface. The isogauss surfaces of a dipola r magnetic field have the

- - general form

r = (1 + 3 cos2 8 )1/6 r 0, (4)

where r0 is the equatorial radius and 0 is the colatitude. For a 1-G polar field the

choice r = 2.5 r would correspond to a surface of constant B B = 0.032 G in the0 o
absence of external currents. It develops (see below) that an equatorial radius r0 = 2.3

provides a much better overall agreement between our model and the solution of
.

• Pneuman and Kopp (1971a,b). We remark parenthetically that the source surface

described by (4) encloses a volume equal to 1.380173 (4ii /3)r~, and that a dipolar source

surface of equatorial radius r 0 = 2.245 r0 would enclose the same volume as the spherical

source surface (of radius 2.5 r0) used by Altschuler and Newkirk (1969).

• -15-



3. 1 Internal Solution

In the dipole case, which is azimuthally symmetric , the scalar potential inside

the source surface simplifies from (1) to the form

V = r0 g~ (r9/r)
2 cos 0 + r0 (r/r0)~ j ~ Pn(cos 0), (5)

where the ~ are expansion coefficients to be determined below and the P~(cos 0) are

Legendre polynomials. The term involving g~ generates the field of the underlying

internal dipole. The magnetic field B (= -,!V) corresponding to (5) is given by

B = 2~~g~ (r 0/r) 3 cos 0 + § g~ (r 0/r)3 sin 0

n (r/r 0)~~ ~~ ~n (cos 0)

+ ë (r/r 0)~H 
~~ P~

’(cos 0) sin 9 . (6)

The coefficients ~ are to be chosen so as to minimize a- , which is the integral of
82 (i~ x B)2 over the surface defined by (4), where Fi is the unit vector in the directiont ~
of the outward normal to the source surface. In terms of (4) this means that Fi is the unit

- . 
.

• vector in the direction of Vr0(r , 0):

- 16- 
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4.,

- 
= (1 + 7 cos2 0 + 8 cos4eY h1

~
’2 [(1 + 3 cos2e )~ + ~~sin 6 cos eJ . (7)

-

~~~~~ 
Thus, we seek to minimize the integral

a- 
~ 

c~
’
B~ dA ~ C (11 x B) dA (8)

S I .F ~~~~ ~~~
—

with respect to the ~ ~~ , where

dA = 2,r r sin 0 [r2 + (dr/de )2]1”2 dO

- 
= 2 Tr r

0 (1 + 7 cos20 + 8 c0s4 0 ) l/2 (1 + 3 cos2 O ) 2/3 sin O dO (9)

is the element of area on the source surface. Since the expansion coefficients ~ in (5)

must vanish for even n in order to preserve the north-south symmetry of the B field , it

follows from (8) that

• a- = 4~~r~f(l + 3x21213 (1 + 7x 2 
+ 8x4) 1/2 B~ dx, (10)

where x = cos 8.  Moreover , it follows from (6) and (7) that

-17- 
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Bt = (1 + 7x2 + 8x4)~~
2 (1 + 3x2i~~

2 (1 - x2)U2

x 
~ 

(r~/r0)~ (1 + x2) g
~

N

+ (1 + 3x2)~~
2)/’6 

~~ [nxP~(x) + (1 + 3x2)P~(x)] ~~~. 
(11)

We seek to minimize a- with respect to each of the expansion coefficients ~~ by

• setting aa-/ = 0. There follows from this condition the requirement that

: (1 + 7x2 + 8x4)~~
2 (1 + 3x2)~~

3 (1 - x2) (1 + 3X
2)( m+2V6

x [mxP m (x) + (1 + 3x2)P~~(x)] I (r0/r~)3 (1 + x2) g~ (12)

+ (1 + 3x 2)~~~ 2~~6 
~~~[nx P~(x) + (1 + 3 x2) P~~(x)] } dx = 0

for every odd integer m ~ N. Thus, one must solve a set of simultaneous linear equations

to determ ine the required coef ficients ~ ~ . Our requirement can be expressed more

concisely in matrix form. We require that

-18-
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~ ~~g?~ ‘~nm = - (r 0/r 0)3 K m~ ~13a)

where

A nm f
:

(1 + 7x2 + 8x4)~~
2 (1 + 3X2)(m+n-6)/6(l - x2)

• X [ci. + 3x2) P~
’(x) + nx Pn(X)]

x [(1 + 3x
2) P ’(x) + mx Pm(X)] dx (13b)

and

Km = (1 + 7x2 + 8x4)~~
2 (1 + 3x2) (m-8)/6 (1 - x4)

X [(1 + 3x2) Pm
’(X) + mx Pm(x)] dx (13c)

for n,m = 1,3,5,7,. . . , N -2 , N. The matrix A nm is clearly symmetric, i.e.,

A nm = A mn~ Therefore , one may alternatively view ~ 1.~/g1 as a column vector and

express (13a) in the form

~ mn ~ ~/g~) = - (r 0/r 0)3 K , (14)

- 19-
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where Km is considered a column vector.

The least-squares condition that determines the ~ can thus be solved by standard

‘4 matrix-inversion techniques. The array 
~‘mn is very well conditioned, being nearly tn-

diagonal. Away from the three main diagonals the array values decrease by

approximately two orders of magnitude per diagonal. We have solved (14) for the ~

with N = 5,7,9,11,13,15. The results are shown in Table 1. It is quite evident from this

tabulation that the results are well behaved, and that the expansion coefficients j
converge rapidly to the values that they would acquire in the limit N —~~ ~~ .

.44
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•1
3 — 0  0

Table 1. Optimal Value s of (r 0/r®) (g~ /g1) for Use 
in (5), as

Determined by Minimizing the Value of c Specified

by (10).

n N=5 N 7  N 9  N=11 N=13 N=15

1 —0.62917 —0.63124 —0 .63185 —0.63205 —0.63211 —0.63213

3 +0.11960 +0.12537 +0.12716 +0.12775 
• 

+0. 12795 +0.12802

5 —0.03038 —0.04088 —0.04448 —0.04574 —0.04619 —0.04635

- •  7 +0.01086 +0.01607 +0.01820 +0.01903 +0.01935

9 —0.00418 —0.00674 —0.00795 —0.00847

11 +0.00168 +0.00293 +0.00360

13 -0.00069 -0.00130

15 +0.00029

-



F’

*1 3. 2 Exterior Solution

2 1/6The meridional component of B at r > (1 + 3 cos 8) r0 in the present model
is defined by constructing the outward normal to the source surface , i.e., by constructing
a straight line parallel to the unit vector ~ specified by (7). In view of the azimuthal
symmetry of the dipole problem , it proves convenient to introduce the cylindrical
coordinates p = r sin 8 and z = r cos 0. Since ~ = ~ sin 0 +~~cos 8 and

= ~ cos e .-Isin 6 , it follows from (7) that
- 5

= (J + 7 cos2
e + 8 cos48)~~

’2 [ci. + 4 cos~O )  ~~sin 0 + 4~~cos3~] . (15)

Thus, the outward normal to the source surface at colatitude 6~ is a straight line having
the slope

• dz/dp = 4(1 + 4 cos2 ~~~~ cos2 0~ ctn 0~ (16)

• and the intercepts

PS = r0 (1 + 3 cos2 O~)h/
’6 sin (17a)

= r0 (1 + 3 cos2 O~)h/’6 cos O~. (17b)
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3. 3 Com~~rison with MHD Solution

In Figure 2, the interior and exterior solutions are joined at r = (1 + 3 cos
2 0)116r0

and are compared with the MHD solution. The footpoints of the field lines were chosen
• 

S 

to coincide with those in the figure published by Pneuman and Kopp (1971a ,b). A
reasonable match to the overall configuration of field lines is achieved with r0 = 2.3 r0.
The improvement of the present model, with its non-spherical source surface , over
models with spherical source surfaces can be seen by comparing Figure 2 with Figure 1.
The direction of the field lines in the exterior region is improved dramatically. Even the
shape of the field lines interior to the source surface is considerably improved. On the
basis of this test with the dipole case, one would expect the present technique not only to

allow a much more accurate comparison of observed interplanetary fields with
photospheric fields , but also to model coronal structures more faithfully .

As has been stated before , the parameter r 0 is adjustable. It is not surprising that

4 
our good overall fit to the MHD solution requires r 0 = 2.3 r0, wher eas the equatorial cusp
of the MHD solution occurs at r 2.5 r0. One could not expect our source-surface model
to agree with the MIlD solution in every detail. Thus , the construction of a realistic
coronal—fiel d model requires a certain degree of judgment in the selection of r0, just as
the selection of a radius for the spherical source surface has required in the past. Of
course, the parameter r0 can be adjusted to match ~,pecific features of the MHD solution
very well. Figure 3 illustrates two such adjustments of r0: th e first to match the MHD
solution in the region close to the neutral sheet , and the second to provide an explicit
tracing of the cusped field line.
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Fig. 2. Configuration of Magnetic Field Line s Emanating
from an Internal Solar Dipole in the MHD Solution
of Pneuman and Kopp (197 1a , b; dashed curves) and
in Our Source-Surface Model (solid curves) .  Our
nonspherical source surface (dotted curve ) is taken
to have an equatorial radius r0 = 2 .3  r , which
corresponds to a polar radius ~ h / 3  r0 ~ 2 .9  r0(cf. Fig. 1). We have taken N = 15 in (5).
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(a)\\~~~~~~~~~~~
.
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Z
~~~

Fig. 3. Configuration of Magnetic Field Line s Emanating from
an Internal Solar Dipole in Our Source-Surface Model
for Selected Equatorial Radii r0 > 2. 3 r® : (a) to Match
the Lowest-Latitude Open Field Line s Shown by Pneuman
and Kopp (1971a ,b) at 3 r0~~ r~~ 4 r~ , r0 = 2.3380 r0;
and (b) to Illustrate the Cusped Fie[d Line Explicitly,
r~ = 2. 3391 r® . As in Figs. 1 and 2, the illustrated
field lines from the source-surface model were
chosen so as to intersect the sun (r = r0) at the same
set of colatitudes 8® as the MHD field lines plotted
by Pneuman and Kopp (197 Ia. b). We have taken
N = 15 in (5).
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3. 4 Interplanetary Magnetic Field

The present model yields a calculable interplanetary magnetic field that can be

compared with spacecraft observations. This circumstance provides a further test of the

accuracy of the model and allows for instructive predictions about the overall structure

of the interplanetary B field. Detailed calculations are provided here for the case of an

internal dipole.

Figure 4 illustrates , the calculation that is required. We must calculate , as a

function of heliocentric distance r , the cross-sectional area of the magnetic flux tube

that is bounded in latitude by a pair of infinitesimally separated normals to the source

surface. The flux tube in question is a figur e of revolution about the z axis. By virtue of

its construction , the flux tube contains a fixed number of field lines. Thus , the product

of (a) the cross-sectional area of the flux tube , and (b) the meridional component of the

magnetic field , must remain independent of r throughout the flux tube.

The element of area transverse to the flux tube is given by dA = 2 rr  p ds1 , where

ds1 is the thickness of the flux tube at heliocentric distance r = p csc 0 .  However , the

thickness ds1 at (r , 8, ço) is proportional to the distance of the point (r , 8 , ~
) from the

center of curvature (C) of the source surface for the point (r 5, O~, 
~~ 

along the same

normal (see Figure 4). Thus, if R is the radius of curvature at (r 5, O s’ ço~), the value of

ds~ is proportional to R. + 8 , where 6 is distance from (r5, e~, ~~
) to (r , 8 , 

~~~ ).

Therefore , the meridional component Bm of B at (r , 0 , ~
) is related to the normal

component B~ of B at (t ’
~~~
, 8~~ ço~) by the formula
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p/r0

Fig. 4. Geometry of Meridional Cross Section
of Magnetic Flux Tube (bounded by
solid line s that intersect at C), as
Employed in the Calculation of B at
Points (r , E~) Outside Our Nonspher-
ical Source Surface (dashed curve)
From the Normal Component
(B 5~~ n B )  of B at the Source Surface
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B = ( p / p ) { R/ ( R + 5 ) ] B

= (r 0/r) (sin 05/sin 0) [i + ( 5  /R) ] ‘(l + 3 cos2 e~)~~6 B~ (18)

:~ We calculate R as a function of Os and obtain 6 and 0 as functions of r and It
would have been more convenient to obtain 8~ R , and 6 in terms of r and 0 , but this
proved intractable.

- , Using the cylindrical coordinates p5 = r5sin 8~ and = r5 cos 8~., we find that the

source surface defined by (4) satisfies the equation

• ( p ~ + z~~ = ( p ~ + 4z~) r ~ . (19)

We consider to be a function of P S on the source surface and differentiate (19)
implicitly to obtain

= — 

~~~

- (1 + 4 cos2 e~) see3 O~ sin (20a)

— (1/8 z5) [(1 + 3 cos2 8~) sec6 8 sin 2 8~

+ 8 + 2 sec2 e~ + 8 (z~ )2 ]. (20b)

I -28-
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The radius of curvature is thereupon given ~~~~~., Thomas , 1960) by

R = jz~~ ~~[i + (z~)
2
]
3I’2 

. (21)

I We note in particular that R —~~ ~ at the equator (8 = ir/2) and that R = 0.8 r at the
~* I S S

I poles.

• 

Since z~ is the slope of the source surface, the equation

— = — (z — z5) z~ (22)

- 
characterizes the normal to the source surface. Therefore , the normal distance 5 of the

point (r , 0 , ~
) from the source surface is given by

5 - + (z - z5)
2
]
h/2 

= [i + (z5
’)2]

112 z - z~ I

= [1 
+ ( z ) 2]~~

2 ( z — z
~

) sgn (cos e~
) . (23)

The remaining task is to calculate z - z~ in terms of r and O~. To do this we write

r2 = p2 +z2 = - 

~~~~~~~~ 

p ) 2 
+ (z-z5+z~

)2

- = ( p  - p)2 + (z - z
~
)2 + r~ + 2p 

~~ 

- 

~ 
+ 2 z~ (z - z5) (24)
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and eliminate (p  - p 5) with the aid of (22). The result is a quadratic equation in (z - z5)

that yields two solutions, one of which can be identified as extraneous because it fails to

reduce to z - z~ = (r - r5) sgn (cos e~
) at cos 8~ = ± 1 (he. , at the poles). The accept-

able solution reads

4[1 + (z~)
2
] (z - z5) =

16 [i + ( z ) 2 ](r 2 
— r~) + r~ (1 + 3 cos2 e~)~ sec6 e

~ 
}1/2 sgn (cos 8~)

— r5 (1 + 3 cos2 e~
) sec3 O~, (25)

where r5 = (1 + 3 cos2 O~)
L/6 r 0 as usual. The substitution of (25) in (23) yields s as a

function of r and 8~ for fixed r0. Moreover , it follows from (23) that

cos 8 = (r 0/r) (1 + 3 cos2 8~)~ ’6 cos

+ [i + (z~)2 ] 1’~
2 ( 5 /r )  sgn (cos e~)~ (26)

i.e., that 8 can be written explicitly as a function of r and for fixed r0.
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We identify B in (18) with the normal component of B = - VV at the source
S ~~~ —

surface:

= (1 + 7 cos2 0 s + 8 cos4 e~)_ 1/2 [(i + 3 cos2 e~) Br + sin 8~ cos e~ B8) . (27)

In order to facilitate applications of the present model by the interested reader , we

present (in Table 2) listings of the quantity (r 0/r0)3 (B~/g~) sec as a function of cos

at the source surface for selected values of N in (5). We have selected this particular

combination of variables because of the fact that its limit remains finite (and

independent of r0/r0) as one approaches the equator (8 = rr /2), i.e., because

B~ ~ (r 0/r 0)3 g~ cos Os in this limit. The expression for Bm given by (18) becomes
• 

S 

indeterminate at cos 0 = ± 1, i.e., at the poles. Since we find z~ = 0 and (therefore )

R !z~’r” = 0.8 r5 at cos = ±1, the correct limit for (18) is obtained by considering a

spherical expansion from the center of curvature, which is located on the axis of I 
-

symmetry at z = 0.2 r5 sgn (cos 0). Thus, we obtain

Bm = Br = 16 [5(r/r5) — 1 3 —2 B~ (28)

at cos 8 = ±1. The source-surface radius at the poles is given by r5 = 21~
3 r0,

according to (4). Since B~ /B~ = - z along the entire field line , it is easy enough to

reconstruct B in  cylindrical ( p ,  
~~ , z) or spherical coordinates outside the source surface:

_ _ _ _ _ _ _ _  I



- -  
~~~~~~~~~ —--~~ W~~~ 

-

Table 2. Value, of (r0/r~)
3 (a.B/g~ ) eec 8~ at the Nonepherical Source

Surface Given by (4), ac Computed from (5) with the
Optimal Coefficient. Specified in Table

cos N=5 N=7 N=9 N=11 N=13 N15

0.0 3.452 3.745 3.960 4.113 4.222 4.300

0.1 3.396 3.674 3.873 4.009 4.101 4.164

0.2 3.243 3.479 3.629 3.717 3.766 3.792

0.3 3.028 3.193 3.269 3.293 3.291 3.281

0.4 2.773 2.844 2.840 2.809 2.781 2.765

0.5 2.484 2.459 2.401 2.362 2.352 2.358

0.6 2.171 2.082 2.032 2.034 2.053 2.063

0.7 1.853 1.773 1.787 1.819 1.823 1.810

0.8 1.572 1.585 1.634 1.624 1.607 1.611

0.9 1.400 1.489 1.455 1.444 1.463 1.455

1.0 1.442 1.245 1.376 1.289 1.346 1.312

~ ~i.B at the source surface.S m . m
S

-32- - 

- - - — -- --5
~~~

• - ,- 5 - -  -5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•
~~~~~~~~~~~~~~~~~~~

-5 - 5 - 5 - 5 - 5



-5. —-.- .5- — -5— - --5-5-5 ---- - --- —~~
--—5—• ———-- — - _—— . _—-55-_-.----- -- 5--5 -._ --—-- - -_ _-- - - -_  —

= - [1 + (z~)
2 ]_1/2 z~ B m sgn (cos e~) (29a)

B
~ 

= [1 
+ (z~)

2 
~ 
—1/2 Bm sgn (cos e~) (29b)

Br = 11 
+ (z~)

2 3— 1/2 (cos 0— z sin 0) Bm sgn (cos (29c)

B0 = — [i + (z~)
2
]

1
~
”2 (sin 8 + z

~ 
cos e) Bm sgn (cos e~) (29d)

We assume that the sun rotates with angular velocity ~2 about the dipole (z) axis and

that the solar-wind velocity U is directed along the normal to the source surface. Thus ,

we neglect the azimuthal component of ii while requiring that u 8 /U
r 

= B 0 /Br • It

follows from the argument offered by Parker (1958) that

B = —  (r sin O — r 5 sin 
~~~~~ 

/u) Bm (30)

in our (more general) model. We would take ~2 = 2.8925 X io 6 sec 1 in order to repro-

duce the 27-day periodicity of solar magnetic features observed from the orbiting earth

(cf. Dessler , 1967). A simple model for B
~, 

could be constructed by adopting the

nominal quiet-time solar-wind velocity (u = 320 km/see) recommended by Hundhausen

(1970), but a better model would require us instead to specif y the probable variation of u

with r and 0~ . Rather than burden the present work with a model for the solar-wind

velocity, however , we shall ignore interplanetary comparisons of B~ with that obtained

from our model and concentrate instead of B .
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Figure 5 illustrates the variation of with r/r 0. In the left panel one follows a

field line by holding fixed the value of O~ (colatitude at which the field line intersects

source surface) or, equivalently, of 0~ 
(colatitude at which the field line intersects the

surface of the sun); in this case the latitude of evaluation decreases with increasing r/r 0.
a - In the right panel one evaluates Bm at fixed latitude k (ir /2)- 8 ~ Thus, the left

panel illustrates a conceptual point , while the right panel illustrates an observational

one. Both panels illustrate a pronounced departure of (r/r 0)2 Bm from constancy at low

latitudes, in marked contrast to the ease of a spherical source surface. With a spherical

source surface (Schatten et al., 1969; Aitsehuler and Newk irk , 1969) one would have

obtained 8 = B~, B8 = 0, and

Br = 3 g~ (r~/r
2r5

) cos 8 , (31)

- 
• 

with r5 independent of O~. It would follow from (31) that (r/r 0)2 Bm~ as well as 0 ,

should remain constant along a field line. Moreover , it would seem from (31) that the

equatorial current sheet at 0 = rr / 2 is not a sharply defined feature. The azimuthal (
~~~ )

component of the current density would be given by

J = (c/4rr ) ~~
. V X B = (3c/4 n r ) (r /r) 3 g~ sin 0 (32)

— ta’ ,— 5 0

in the case of a spherical source surface. This would represent a distribution of current

having a full width of 120° (out of a possible 180°) at half maximum.
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, The results of the present model (with its non-spherical source surface) stand in

sharp contrast to (31) and (32). Figure 6, for example , illustrates the variation of Bm
- 

- with cos 8 at r = 215 r0 (~~1 AU) , as obtained by us from (18). We find B m at r~~1 AU to

• 
- be nearly constan t (within 10% of the polar value) over at least 85% of the unit sphere.

Our meridional component of B, in contrast to that described by (31), actually passes

through a broad off-equatorial minimum at a latitude 300 and rises to more than four

times the polar value at a latitude of approximately 0.023~ ; we have magnified the scale
- 

- of the abscissa by a factor of 100 for cos 8 < 0.01 in order to show the region of field

reversal clearly (see Figure 6). The maxima in Bm i are separated by 1.2 x 1O5 km at

a heliocentric distance of 1.5 X IO 8 km (1 AU). Such precise numerical results should

not be taken literally, since source-surface models are intended only to simulate

dynamical calculations and not to supplant them. However , we view the evolution of

such a sharply defined interplanetary current sheet as a major improvement over past

source-surface models that employed spherical source surfaces.

A final comparison between our model and that of Altschuler and Newkirk ( 1969)

is shown in Figure 7. Interplanetary field lines in each case have been traced from

colatitude 0 at r = 215 r0 (~~i AU) to colatitude at the source surface (r = r )  and to

colatitude 80 at the surface of the sun (r = re). We selected r5 = 2.5 r0 for the case of a

spherical source surface and r5 = 2.3 (1 + 3 cos2 e~) h / ’6 r0 for the case of a non-spherical

source surface , in accordance with the examples analyzed above. We recall that 8 and

are equal for the case of a spherical source surface , but we note with surprise the

nearly linear relationship between 8 and 8~ for the case of a non-spherical source

surface. Moreover , except at cos 8 = 0 and cos 0 = ± 1, we find that the field lines at

interplanetary latitude X. = ( rr /2) - eJ map to higher latitudes at r = r5 and at r = r 0 in

our model than in the model of Altschuler and Newkirk (1969).
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cos O ( at 1 Au )

Fig. 6. Variation of Meridional Component Bm of
Interplanetary Magnetic Field at Helio-
centric Distance r = 215 r0 1 AU with
Colatitude 0 for Nonspherical Source
Surfac e with Equatorial Radius ro = 2. 3 r0.
Dashed curve and lower scale apply for
cos 8 � 10-2 ; solid curve and uppe r scale
apply for cos 8 � 10-2. We have taken
N = 15 in (5) .  The ordinate measures Bm
in y( l y 10 5 G) if one takes g9 = 1 G.
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0

0 30° 600 90°
O AT 1AU

Fig. 7 . Results of Tracin g Magnetic Field Line
from Colatitude 6 at r = 215 r0 1 AU
in Interplanetary Spac e to Colatitude
at the Source Surface (r = r s) and Thence
to Colati tude 9~ at the Surface of the Sun
(r = r0). Dashed curves correspond to
the model of Altschuler and Newkirk
( 1969 ) , i .e . ,  to a spherical source sur-
face of R adius r 5 = 2. 5 r ®. Solid
curves correspond to the present model ,
i .e . ,  to a nonspherical source surface
~~TU~i equatorial radius ro = 2. 3 r0. We
have taken N = 15 in (5) .
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4. APPLICATION TO REALISTIC B FIE LD

The obvious extension of our concept of a non-spherical source surface is to apply

it to the spherical-harmonic expansion deduced from a set of observed photospheric B-

field data. This procedur e carries the promise of allowing a calculation of realistic

coronal and interplanetary magnetic fields that are accurate enough to permit a detailed

investigation of a variety of solar-interplanetary structures, 
~~~~~ 

neutral sheet s, sector s,

high-speed streams , coronal holes, helmet streamers , and so on. In order to do this , one

must develop a numerical program to minimize a- as given by (3) over an arbitrary ,

azimuthally asymmetric source surface. This is a rather large and complicated task , and

is beyond the scope of the present paper. However , before such a task is started , we can

and should investigate what the shape of a realistic source surface (as determined by the

- 
- procedure outlined in Section 2) would be. Accordingly , we have obtained from

R. H. Levine (personal communication , 1977) a set of spherical-harmonic expansion

coefficients (g~ and h~ from n = 1 to n = 20 , m = 0 to m = n) for use in (1) for two well-

studied solar rotations (1602 and 1609). We have used these coefficients to calculate

several isogauss surfaces. For purposes of illustration we have adopted the isogauss

= 0.03 G as the hypothetical source surface. In accordance with the present pre-

scripti on , the coefficients ~ and in (1) have been neglected in calculating the

isogauss.

The results are shown in Figure 8 in the form of synoptic contour plots of constant

r5/r 0. The actual shape of the isogauss surface for rotation 1602 can be seen more

clearly in Figure 9, where two meridional cuts through the surface are shown. The
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Fig. 8. Contours of Constant (specified) r8/r0 on the
Isogaussian I t Source lt Surface IBI = 0.3 G for
Rotations 1602 (a) and 1609 (b), Based on (1)
with (g~ ’, h~~) Supplied by R.H. Levine (per-
sonal communication , 1977) and (2) with
(~~~~~1, ~~ Neglected
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particular longitudes of the cuts were chosen so as to display the largest possible

variations of r
~/r0 with latitude. In general, the deviation of isogauss surfaces from

sphericity is very large, which indicates that the application of a non—spherical source

surface (rather than a spherical source surface) to coronal magnetic-field models based

on real data will produce significant changes.

S The above solar rotations occurred during the Skylab era (rotation 1602 in June

1973; rotation 1609 in December 1973). As a result there is a wealth of information

available for these two rotations , and we can compare details of the shapes of the cor-

responding isogauss surfaces with other observed features ( cf. various references in

Zirker , 1977). The basic shape of the isogauss surface for rotation 1602 resembles the

shape of the isogauss surface for the dipole model , with obvious “bulges” in the polar
-
. . 

- regions. Superimposed on this basic dipole shape are various structures in the equatorial

region associated with active regions, particularly between longitudes of 00 and 1800.

This is the same general pattern that was inferred from observations of coronal holes and

interplanetary streams. The isogauss surface for rotation 1609 displays a considerably

different appearance; its shape might best be described as that of a tilted dipole. Again ,

this basic shape was inferred from interplanetary and coronal observations. (See

Hundhausen , 1977 , for a more detailed discussion of the coronal and interplanetary

phenomenology during this time period.) Viewing each isogauss surface in more detail ,

we note that there is a one-to—one correspondence between “bulges” in the surface and

coronal holes. For example, the bulge centered at about 100 longitude and 20°S latitude

in rotation 1602 is coronal hole number 1. All of these considerations lead us to conclude

-42- 
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that the use of a non-spherical source surface would lead to a very significant

improvement in current coronal field models.

The failure of a source surface to be everywhere convex entails no obvious

impediment to the interior solution, i.e., to the minimization of a- in (3). However , thi s
- 

- 
failure will definitely impact our construction of the exterior solution , since outward

normals from different points on the source surface will necessarily intersect somewhere

outside the source surface. Such intersections suggest the formation of shocks in the

outer corona and perhaps correspond to features that are actually present in space. If

confirmed by observation or by MHD theory, the presence of such shocks would be of

interes t in the context of heating the solar wind (C. F. Kennel , personal communication ,

1978). However , since we do not know the fundamental relationship (if any) between

source-surface constructions and MHD , it would be premeture to conclude that

indentations in our source surface correspond to shock-producing indentations in a

properly computed MHD critical surface (C. F. Kennel , personal communication , 1978).

The effect of indentations in an isogauss source surface for the present work is to

complicate the construction of our exterior solution , probably by requiring a hydrodyna-

mical treatment of solar-wind expansion from the source surface. Such indentations

could perhaps be removed by smoothing without introducing a major error in the field

configuration. We do not propose an arbitrary smoothing of the source surface as such.

Rather , we contemplate diminishing the spatial resolution with which B i s  described at

r = r0 (
~~ , by averaging the observed B over a larger-than-necessary area of the solar

surface) so as to reduce the influence of the higher—order spherical harmonics in the

vicinity of r = r5. Such a procedure would tend to preserve the gross shape of the source

surface while removing the bothersome indentations.
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5. DISCUSSION

It appears that the general features of an MHD solution for the solar corona can

be simulated quite well by use of an appropriately chosen non-spherical source surface.

Moreover , the non-spherical source surface seems to generate a more satisfactory

interplanetary B field than do the more conventional spherical source surfaces of

Schatten et al. ( 1969) and Altschuler and Newkirk (1969). We take this opportunity to

discuss some of the more subtle issues that may arise in the course of implementing our

model based on a non-spherical source surface.

One might ask why we have considered only the internal sources of B in specifying

the isogauss source surface , when it would have seemed more self-consistent to select an

- -
. isogauss of the ultimate field configuration. We can respond to this question in several

ways. First , we note that our results for the dipole case are very satisfactory, when

compared with the MHD solution of Pneuman and Kopp (1971a ,b). Second , we remark

that the search for a self-consistent isogauss source surface would have entailed an

infinite series of iterations that would have defeated our objective of defining an easily

implemented procedure for calculating B. Third , we remark that the minimization of a-

in (3) produces a trajectory of extremely small (ideally vanishing) total B on the source

surface , i.e., at the field cusp (see Figures 1-2) that constitutes the inner edge of the

neutral sheet. Therefore , the self-consistent isogauss source surface (if definable at all)

• is certainly not everywhere convex, as would be required for the construction of our

exterior solution.
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Our source surface bears a morphological and conceptual resemblance to the self-

consistent Alfvénic surface calculated in MHD by Pneuman and Kopp (1971a ,b). Their

Alfvénic surface (at which pu2/2 = B2/871- for a solar wind of mass density p and bulk

velocity u), however, was characterized by an equatorial indentation, and so was not a

convex surface. Our source surface r5( 0)  is located sunward of the MHD Alfvénic

- - surface rA ( 0 ) at all latitudes , i.e., is completely enclosed by the Alfvénic surface of

Pneuman and Kopp (1971a ,b). It is difficul t to assess the importance of the inequality

~) < r~ ( 0) , since , as was stated above, we do not know the fundamental

mathematical relationship (if any) between source—surface constructions and MHD. The

computational advantage of our source-surface approach is that we can construct coronal

and interplanetary B fields from the solar B field without having to calculate the solar-

wind properties simultaneously. However , we note that Pneuman and Kopp (1971a ,b)
- .  

-
- have defined rA

(e) without regard for the thermal energy density contained in the

plasma. A differently defined rA( 0) might have had greater significance in MHD and

might also have more nearly approximated our r5( 9) .

One evident use of the results obtained above for the dipole case is the

construction of a model solar wind in a prescribed B-field geometry. This has been done

in exospheric theory (Lemaire and Scherer, 1971) for a prescribed radial magnetic field

and in fluid theory (Durney and Pneuman, 1975) for a prescribed non-radial magnetic

field, but with solar rotation neglected. It would be highly relevant to develop model

solar winds in both exospheric theory and fluid theory for the present model field, which

might be viewed as a prototype of reality. The present model field might also serve as a

prototype for the description of cosmic-ray transport within the heliosphere. Jokipii et

al. (1977) have considered the effects of gradient-curvature and other adiabatic drifts
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Northrop, 1963) on cosmic—ray transport in a model field that , unlike (31), closely

resembles the present one at large distances from the sun.

We can make a qualitative comparison between interplanetary B-field observations

and our results shown in Figure 6 by recognizing that our planar neutral sheet

corresponds in nature to a neutral sheet that is warped about ±15 0 with respect to the

heliographic equator (Schulz , 1973; Levy, 1976; Smith et al., 1978). Thus , we should

- - interpret X f ( ii-/2) - 0 in Figure 6 as the angular distance of the observer from the

warped neutral sheet at r — 1 AU and heliographic longitude ~o , and we should interpret

X = 0 as the crossing of a “sector boundary” of the sort described by Wilcox and Ness

— 
(1965). In a superposed-epoch analysis of their observations of B , Wilcox and Ness (1965)

found a relative minimum in B just past the middle of each sector (i.e., near the

maximum attainable X) and relative maxima in B just before and just after the crossing

of a sector boundary. A maximum attainable X of 15~ would correspond to

cos 0 ~ 0.26 in Figure 6. Thus , properly interpreted , the observations of B are in good

qualitative agreement with Figure 6. The maxima in B observed by Wilcox and Ness

(1965) were , however , neither as pronounced nor as near the “sector boundaries” nor as

symmetrical about the minimum in B as one would expect from Figure 6. Thus, the non-

spherical source surface specified by (4) appears to account for the qualitative form of

magnetic-field structure observed within an interplanetary sector , but the present

approach must be applied to a more realistic model of the solar B field before any

quantitative comparisons can be made.

Similar superposed-epoch analyses reported by Wilcox (1968) suggest nearly a

doubling of the solar-wind velocity (from u — 250 km/sec to u — 450 km/see) between the

sector boundaries ~ = 0) and the middle of a sector ( X  ~ 15° by the above inter-

pretation). This would correspond to a latitudinal gradient — 10-15 km/sec per degree of
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equivalent heliomagnetic latitude and is in good agreement with the results of Rhodes

and Smith (1976), who infer a gradien t — 10-15 km/sec per degree of heliographic latitude

from spacecraft observations made in and near the ecliptic plane. The present

interpretation suggests that numerical uncertainties and scatter in the analysis of such

spacecraft data could be reduced greatly by taking account of the observer ’s position

within a sector , i.e., of the inferred angular distance between the observer and the

warped neutral sheet.

In summary, we consider the use of a non—spherical (isogaussian) source surface to

be very promising as a method of modelling the coronal and interplanetary B field . We

have demonstrated the utility of the method by constructing the prototype of a model

field , i.e., that corresponding to an internal dipole surrounded by the source surface

specified by (4). We anticipate the application of our method to more realistic

representations of the solar B field , but we recognize that considerable work remains to

be done before this goal is f ully achieved.
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THE IVAN A.  GETTING LABORATORIES

The Laboratory Operations of The Aero space Corporation is conduct ing

experimental and theoretical investigations necessary for the evaluation and

application of scientifi c advances to new military concepts and systems . Ver-

satility and flexibility have been developed to a high degree by the laborator y
personnel in dealing with the many problems encountered in the nation ’ s rapidly
developing space and missile systems . Expertise in the latest scientifi c devel-

opments is vital to the accomp lishment of tasks related to these problems. The

laboratories that contribut e to this research are:

Aerophysics Laboratory; Launch and reentry aerod ynam ic s , heat trans-
fer , reentry physics , chemical kinetics , structura l mec hanics , flight dynamic s ,
atmospheric pollution , and hi gh-power gas lasers.

Chemistry and Ph ysics  Laboratory : Atmosp heric reactions and atmos-
phe~ ic optics , chemi cal reactions in polluted atmosp heres , chemi cal reactions
of excited species in rocket plumes , chemical thermod ynamics , plasma and
laser-induced reactions , laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials , lubrication and surface phenomena , photo-
sensitive materials and sensors , hig h precision laser ranging, and the app li-
cation of physics  and chemistry to problems of law enforcement and biomed icine .

Electronics Research Laboratory : Electromagnetic theory, devices , and
propagation phenomena , including plasma electromagnetic.; quantum electronics ,
las~,rs , and elect ro -optics; communication sciences , applied electronic . , semi -
con ducting, superconducting, and crystal device physics,  optical and acoustical
imaging; atmosp heric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laborat~~ 1: Development of new materials; metal
matrix composites and new forms of carbon ; test and evaluation of grap hite
and ceramics in reentry; spacecraft material , and electroni c component . in
nuclear weapons environment ; application of fracture mechanics tc stre .. cor -
rosion and fatigue-induced fractures in structural metal. .

Space Sciences Labo rato ry: Atmosp heric and ionosphe r i . physics , radia-
tion from the atmo sphere, density and composition of the atmosphere . aurorae
and airg low; magnetospheric physics , cosmic rays , generation and pr opagat ion
of plasma waves in the magnetosphere ; solar ph y s ics , studie, of solar magnetic
field.; space astronomy, x-ray astronomy; the effects of nuclear explosions ,
magnetic storms , and solar activity on the earth’ s atmosphere , ionosph ere , and
magnetosp here; the effects of optical , electromagneti c , and particulate radia-
tions in space on space systems.

THE AEROSPACE CORPORATION
El Segundo . California
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